Matthew Harper

Calculus 2 Convergence and Divergence Tests Chart:

Test	Converges	Diverges	Inconclusive
limit	None	$\lim_{n\to\infty}a_n\neq 0$	$ \lim_{n\to\infty} a_n = 0 $
ratio (the go-to test)	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
$geometric \ (form\ of\ \sum_{0}^{\infty}r^{n})$	$ r < 1$ $converges\ to\ \frac{1}{1-r}$	r > 1	None
root (n power in expon.)	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$
$p-series $ $(form of \frac{1}{n^p})$	p > 1	$p \le 1$	None
integral (positive, decreasing, continuous a_n for $n \ge 1$)	$\int_{1}^{\infty} a_{n} dn < \infty$	$\int_{1}^{\infty} a_{n} dn = \infty$	None
Leibniz's/alternating $(form\ of\ \sum_{1}^{\infty}(-1)^{n+c}a_{n})$	a_n is decreasing and limits to zero	None	None
direct comparison (for a_n with small changes from a known series b_n)	$for \sum b_n > \sum a_n$ and $\sum b_n$ converges	$for \sum b_n < \sum a_n$ and $\sum b_n$ diverges	None
limit comparison (similar to direct comparison test)	for positive a_n and b_n $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$ and b_n converges	$for \ positive \ a_n \ and \ b_n$ $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$ and $b_n \ diverges$	None